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Iterative solvers for quadratic discretizations of the
generalized Stokes problem
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SUMMARY

We present in this paper various iterative methods for the solution of large linear and non-linear systems
resulting from the discretization of the generalized Stokes problem. A second-order (O(h2)) P2 − P1
mixed �nite element is used for the approximation of the velocity and the pressure. Solution strategies
based on conjugate gradient-like methods, the Uzawa’s and Arrow–Hurwicz’s methods are presented.
Schur complement methods are also explored in the context of a hierarchical decomposition of the
velocity �eld. The ever present preconditioning problem is also addressed. The performance of these
iterative methods will be discussed on complex �ows of industrial interest. Copyright ? 2004 John
Wiley & Sons, Ltd.

KEY WORDS: iterative solvers; preconditioning; generalized Stokes problems; mixed �nite elements;
polymer �ows

1. INTRODUCTION

Polymer processes like injection molding, extrusion, coextrusion, calandring, etc., have many
applications in the plastic industry. Numerical modelling of such processes is now playing
an important role and this role will further increase in the near future. However, current
numerical techniques prevent complete, accurate and reliable prediction of these processes.
The di�culties are overwhelming: complex three-dimensional geometries, complex rheological
behaviour of polymers, instabilities in certain operating conditions, etc.
The need for more e�ective solvers is clear, especially for three-dimensional problems.

In most numerical simulations, polymers are assumed purely viscous and incompressible but
even when viscoelastic e�ects are taken into account, Stokes-like problems are central to the
solution. This is why we will focus on the development of e�cient and accurate solvers for
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generalized Stokes problems. First, let us recall some basic concepts concerning the (gener-
alized) Stokes problem.
Given a �ow domain �, the problem is to �nd the velocity u and the pressure p satisfying

−∇ · [2�(|Ṡ(u)|)Ṡ(u)] +∇p= f in �

∇ · u=0 in �

with appropriated boundary conditions which will be speci�ed for each �ow problem of
Section 5. The viscosity � is a function of the second invariant

|Ṡ(u)|2 = 2Ṡ(u) : Ṡ(u)=2∑
ij
Ṡ(u)ijṠ(u)ij

of the rate of strain tensor

Ṡ(u)=∇u+ (∇u)T
2

The following viscoplastic behaviour will be considered in this paper

�(|Ṡ(u)|)=



�0; Newtonian case

�0|Ṡ(u)|n−1; power law

�0(1 + �2|Ṡ(u)|2)(n−1)=2); Carreau model

where �0, � and n are rheological constants determined through curve of viscosity data. In the
Newtonian case (n=1), the viscosity �0 is constant while in the viscoplastic case (0¡n¡1),
the viscosity depends on the velocity �eld, introducing a non-linearity. We will now consider
the non-linear case.
For simplicity, we suppose that we have homogeneous boundary conditions u=0 on the

boundary �. Multiplying the conservation of momentum and mass equations by test functions
v and q in appropriate functional spaces V and Q, and integrating by parts, the variational
form is given by: �nd u∈V and p∈Q satisfying

∫
�
2�(|Ṡ(u)|)Ṡ(u) : Ṡ(v) dV −

∫
�
p∇ · v dV =

∫
�
f · v dV

∫
�
q∇ · u dV =0

The Newton method is then applied in order to linearize the problem. Starting from an
approximate solution (u0; p0) a Newton step requires the calculation of a correction (�u; �p)
solution of

au0 (�u; v)−
∫
�
�p∇ · v dV =Ru((u0; p0); v)

∫
�
q∇ · �u dV =Rp((u0; p0); q)

(1)
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where, assuming a Carreau model, the symmetric bilinear form au0 and the residual R((u0; p0); v)
are de�ned by

au0 (�u; v)=
∫
�
(2�0(1 + �2|Ṡ(u0)|2)(n−1)=2Ṡ(�u) : Ṡ(v)) dV

+
∫
�
(4�0(n− 1)�2(1 + �2|Ṡ(u0)|2)(n−3)=2(Ṡ(u0) : Ṡ(�u))(Ṡ(u0) : Ṡ(v))) dV

Ru((u0; p0); v)=
∫
�
f · v dV +

∫
�
p0∇ · v dV −

∫
�
2�0(1 + �2|Ṡ(u0)|2)(n−1)=2Ṡ(u0) : Ṡ(v) dV

Rp((u0; p0); q)=−
∫
�
q∇ · u0 dV

(2)

The approximate solution is then updated:

u1 = u0 + �u p1 =p0 + �p

and a new correction (�u; �p) is computed until convergence.
The bilinear form au0 is obviously symmetric but not positive de�nite unless we suppose

the existence of a positive second plateau for the viscosity. This implies that the viscosity
does not tend toward 0 even if |Ṡ(u)|2 is very large. We will thus make this assumption with
no practical consequences in applications. In the linear case (n=1) we recover the classical
Stokes problem.

2. THE DISCRETE PROBLEM

The discretization of system (2) is delicate and requires discrete spaces Vh and Qh satisfying
a compatibility condition known as the inf–sup condition as described in Brezzi–Fortin [1].
Two stable discretizations will be considered in this work. The �rst one is a classical choice
for three-dimensional problems because of its low number of degrees of freedom and relative
accuracy. It is called the Mini element (see Reference [2]) and is presented in Figure 1.
The velocity is linear (P1) but enriched by a so-called bubble function of degree 4 attached
to the barycentre of each element. The degrees of freedom associated with the bubble can
be condensed out through classical Gaussian elimination (static condensation). A continuous
linear approximation is used for the pressure. The Mini element satis�es the inf–sup condition
and converges linearly (O(h)). In the next section, we will present a speci�c solver to be used
with the Mini element. Convergence of the algorithm is satisfactory but as we shall see, the
computed solutions are not fully satisfactory. Arti�cial boundary layers are present polluting
the pressure solution. This is one of the reasons to consider second-order elements.
The second element is the well-known quadratic mixed element referred to as the Taylor–

Hood element (see Figure 2). A continuous P2−P1 is used for velocity and pressure �elds. It
is second-order accurate (O(h2)) and we will focus on the development of numerical methods
for this element. For reasons to be explained later, we will consider a hierarchical basis for
the space of quadratic polynomials. A quadratic velocity �eld u can thus be decomposed into
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Pressure Velocity

Figure 1. The Mini element.

Pressure Velocity

Figure 2. The Taylor–Hood (P2 − P1) element.

a linear part ul and a quadratic correction part uq. In other words, we have

Vh=Lh ⊕Wh

where Lh is the space of continuous piecewise linear polynomials and Wh is a space of
continuous piecewise quadratic corrections. The linear part ul is associated to the vertices of
the tetrahedron while the quadratic part uq is related to the edges. This decomposition will
be very useful for some iterative procedures that will be considered later.
The main objective of this paper is to develop e�cient iterative solvers for quadratic ele-

ment within the context of incompressible �ows. Among conformal second-order mixed �nite
element for Stokes problem, Taylor–Hood is the cheapest element having the least degrees
of freedom. Hence, we will focus on numerical strategies for this element. Very e�ective
iterative schemes can be found in the literature (see Reference [3] for a good survey). The
most e�ectives solvers are designed for low-order �nite elements such as the P1 − P1 and
makes use of multigrid or multilevel approach. Moreover, the implantation of these solvers
is complicated and needs sophisticated expertise. The underlying goal is to propose e�cient
iterative solvers which are relatively easy to implement and applicable by third party.
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For the Taylor–Hood element, the discrete system arising from the linearized generalized
Stokes problem (1) can be written in matrix form as[

A Bt

B 0

][
�u
�p

]
=

[
Ru
Rp

]
(3)

where Ru and Rp refer to the residual vector to the velocity and the pressure variable,
respectively. Let us recall that the matrix A is symmetric, positive de�nite and may de-
pend on a previous solution u0, while the matrix B is rectangular. The complete system is
however inde�nite.
Iterative methods using Mini elements will also be needed for preconditioning reasons. Let

us describe the matrix form associated with the Mini element. In principle, this discretization
admits a similar form to (3). As mentioned above, the degrees of freedom are reduced to
those associated with the linear part of the velocity and the pressure, i.e. equal order P1
approximation. In term of these degrees of freedom, the system can be written as[

A Bt

B −C

][
�u
�p

]
=

[
Ru
Rp

]
(4)

We still denote by the letters A and B the corresponding di�usion matrix and the discrete
divergence matrix coming from the P1 approximation.
The stabilization matrix C comes from the condensation process of the bubble functions

associated to the barycentre of each element. It can also be seen as a stabilization term of
the form

∑
K
�K

∫
K
∇p · ∇q dv

with speci�c values �K depending on the element as described in Reference [4]. The global
matrix of system (4) is symmetric but still inde�nite.
Before moving to iterative strategies, a few more remarks are necessary on the condensation

process. In the non-linear case, one cannot eliminate the degrees of freedom associated to the
bubble functions in a straightforward fashion. One way to cope with this problem is to neglect
the in�uence of the bubble term in the non-linear expression of the viscosity. This special
treatment has been �rst proposed by Coupez [5] and can be interpreted properly in terms of
a three �elds problem:
Find (u; p; d), where d stands for a piecewise constant tensor, satisfying

∫
�
2�(|d|)Ṡ(u) : Ṡ(v) dV −

∫
�
p∇ · v dV =

∫
�
f · v dV

∫
�
q∇ · u dV =0

∫
�
d : e dV =

∫
�
Ṡ(u) : e dV
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where a : b=
∑

i; j aijbij stands for the usual double contraction operation on second-order
tensors.
The last equation corresponds to a projection onto the space of symmetric tensor constant

per element. Obviously, Ṡ(ul) is the solution of this projection problem where ul is the linear
part of the velocity. Similar ideas have been used for the simulation of viscoelastic �uids [6].
In this paper, we will present several iterative schemes for solving the (generalized) Stokes

problem based on quadratic discretizations. These methods will be tested on classical three-
dimensional benchmark �ow problems. The most promising strategies will be applied to large-
scale industrial 3D �ows.
An outline of the paper is as follows. In Section 3, we shall present iterative solvers based

on the usual velocity–pressure decomposition of the global system. The next section is de-
voted to iteratives methods based on the hierarchical decomposition of the quadratic �nite el-
ement. Comparison between the various solvers and numerical results are presented in the last
section.

3. ITERATIVE METHODS BASED ON THE (u; p) DECOMPOSITION

In the following we present di�erent solution strategies for solving the linearized Stokes
problems (3). In this section, u and p will stand for the correction variables with homogenous
boundary conditions. This discrete problem takes the form of a saddle-point problem[

A Bt

B 0

][
u
p

]
=

[
f
g

]
(5)

Several iterative schemes have been proposed in the literature for solving saddle-point
problems, see References [7–12].

3.1. Uzawa algorithm

Uzawa’s method is classical for solving saddle point problems. The algorithm can be
written as

uk+1 = A−1(f − Btpk)
pk+1 =pk + �(Buk+1 − g)

where � is a su�ciently small positive parameter. This algorithm can be interpreted as a
gradient method on the dual problem, see Reference [13].
Elimination of uk+1 in the �rst equation leads to the following relation:

pk+1 =pk − �(g− BA−1f + BA−1Btpk) (6)

which is nothing but a �xed point-strategy for solving the linear problem

BA−1Btp=BA−1f − g
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The convergence of the classical Uzawa method is notoriously slow. To speed up the
convergence, one need to introduce a preconditioner of the form

uk+1=A−1(f − Btpk)
M (pk+1 − pk)=Buk+1 − g

(7)

where M is a preconditioning matrix assumed to be symmetric and positive de�nite.
In practice, the acceleration of the simple iteration (7) is done by applying the conjugate

gradient method to system (6) preconditioned by the matrix M . The success of this method
depends heavily on the spectral properties of the Schur complement matrix BA−1Bt . Indeed,
for stable discretizations of the Stokes problem, it can be shown that there exists bounds �¿0
and �¿0 with

�6
(BA−1Btp; p)
(Mpp;p)

6� ∀p �=0

where Mp stands for the pressure mass matrix, see Reference [1]. Since the condition number
of Mp is independent of h, the above inequality implies that the condition number of BA−1Bt is
also independent of h. This makes the preconditioned conjugate gradient method very e�ective
for solving the saddle-point problem (5).
Let us now present the principal ingredients for solving the complete problem:

M−1BA−1Btp=M−1(BA−1f − g) (8)

First, the right-hand side is computed:

1. Solve Ad1 =f;
2. compute the product Bd1 and put the result in vector d2;
3. solve Md3 =d2 − g and return d3.

To apply the PCG method to problem (8), we have to de�ne the product of the system
matrix with a descent vector d. In our case, this product is done in many steps. For a given
vector d (provided by the iterative algorithm) of the same dimension as p:

1. Compute the product Btd and put the result in vector d1;
2. solve Ad2 =d1;
3. compute the product Bd2 and put the result in vector d3;
4. solve Md3 =d4 and return d4.

(Note that in the above algorithm, vectors di are destroyed as soon as possible.) The pre-
conditioning matrix M was chosen as the lumped diagonal mass matrix. This diagonal matrix
is known to be spectrally equivalent to the pressure mass matrix. Hence, the nice conver-
gence of the solver is essentially unchanged, see Reference [10]. For large-scale problem, the
preconditioned (Jacobi, SSOR) conjugate gradient method was also applied to the solution of
the velocity problem (step 2).
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3.2. Preconditioned conjugate residual method

For symmetric inde�nite systems such as (4) and (5), there is an iterative solver that was
�rst advocated by Wathen and Silvester in a series of two papers [10, 11]. They have used
the preconditioned conjugate residual method for solving the classical Stokes problem. This
strategy was used by Coupez and Marie [14] for large-scale problems arising in the plastic
industry (polymer �ows).
Although the Uzawa algorithm is a reliable method for solving Stokes-like problems, it can

be very costly since the inner problem A−1 must be solved very accurately. Indeed, in the last
section, we will show that if we restrict the number of iterations for the inner iteration, the
overall performance of the solver is considerably reduced. Hence, for large problems, a non-
nested iterative strategy could be very attractive. Let us describe brie�y the iterative method
used by Wathen and Silvester. The symmetric inde�nite system is solved globally by a Krylov
subspace method known as the conjugate residual method (CR) or minimal residual method
(MINRES) which can be derived from the GMRES method for the special case where the
matrix is symmetric. This leads to a three-terms recurrence algorithm applicable to symmetric
inde�nite systems (see Reference [15] for more details).
Following the second paper of Wathen and Silvester [11], we have used a block precondi-

tioner based on the natural decomposition of the velocity and pressure variables

M=

[
MA 0
0 MC

]

where the matrix MA is an approximation of the matrix A and the matrix MC is spectrally
equivalent to the mass pressure matrix in the case of the Taylor–Hood element or the stabi-
lization matrix C for the Mini element.

3.3. Arrow–Hurwicz algorithm

The main drawback of the Uzawa’s method (7) is the need to solve as exactly as possible the
�rst equation. If an exact or a very accurate velocity solver is available, this is the method of
choice. But for large-scale computations, an iterative solver must be chosen to compute the
velocity at each iteration of Uzawa and a large number of iterations will be needed to obtain
a good precision.
The starting point for the class of methods that will be introduced is the Arrow–Hurwicz’s

method for solving a saddle-point problem (see Reference [13]). The method as originally
proposed can be viewed as a way to obtain steady-state solution from a time-dependent
approach

@u
@t
+ Au+ Btp− f=0
@p
@t

− Bu+ g=0
(9)

Using an explicit-implicit scheme for the time discretization of the above evolution system,
this leads to the classical Arrow–Hurwicz algorithm

uk+1 = uk + �(f − Auk − Btpk)
pk+1 =pk + �(Buk+1 − g)

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:695–720
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where � and � are positive parameters viewed as pseudo-time step combined with a scaling
factor.
A class of preconditioned versions of the Arrow–Hurwicz scheme is given by

MA(uk+1 − uk) =f − Auk − Btpk
M (pk+1 − pk) = Buk+1 − g

where MA and M are symmetric positive de�nite matrices. In other words, the simple iteration
looks like [

MA 0
B −M

][
uk+1 − uk
pk+1 − pk

]
=

[
f
g

]
−
[
A Bt

B 0

][
uk
pk

]

In practice, this scheme must be accelerated by a Krylov subspace method operating on
the global system. The preconditioner corresponds to the block non-symmetric matrix

M=

[
MA 0
B −M

]

This choice of M prevents us to choose a symmetric but inde�nite iterative solver such
as the conjugate residual method (see References [10, 15] for details on this Krylov subspace
method). Instead, we have used the BiCGSTAB method �rst proposed by van der Vorst [16].
The lost of symmetry is largely compensated by the nice convergence of the solver and by
the fact that it extends to the case of the non-symmetric Navier–Stokes system. Recall that the
BiCGSTAB algorithm is a transpose-free version of the Biconjugate gradient method (BCG)
which signi�cantly smooths the convergence rate of the BCG method. A big advantage of
BiCGSTAB over GMRES is the fact that the algorithm involves only a three-terms recurrence.
Hence, the storage requirement is much less than GMRES and the cost per step is reduced,
although the BiCGSTAB method is slightly less robust than GMRES.
Several choices are possible for the preconditioning matrices MA and M , ranging from the

expensive choices MA=A and M =Mp to the cheapest MA=diag(A) and M =diag(Mp) where
diag(E) stands for the diagonal part of the matrix E. Numerical experiments will be given in
the last section.

4. ITERATIVE METHODS BASED ON THE HIERARCHICAL
DECOMPOSITION

The hierarchical decomposition approach takes full advantage of the hierarchical basis for the
velocity �eld. Let us recall that the velocity �eld is decomposed into a linear part ul and a
quadratic correction uq. The Stokes problem is written accordingly in the following form:


All Btpl Alq
Bpl 0 Bpq
Atlq Btpq Aqq





ul
p
uq


=



fl
g
fq


 (10)
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which can also be written as [
Ã B̃t

B̃ Aqq

][
ũ1
ũ2

]
=

[
f̃1
f̃2

]
(11)

where

Ã=

[
All Btpl
Bpl 0

]
; B̃=[Atlq Btpq]; ũ1 =

[
ul
p

]
; ũ2 = [uq]; f̃1 =

[
fl
g

]
; f̃2 = [fq]

System (11) is similar to the original Stokes system (3), although the variables are now
di�erent. The matrix Ã corresponds to an unstable P1−P1 discretization of the Stokes problem.
The matrix Aqq is symmetric, positive de�nite and very well conditioned.
It is thus possible to solve this problem using similar techniques as those developed in the

previous section. We �rst consider global preconditioned solvers and then we propose a Schur
complement method.

4.1. Global block preconditioned iterative method

We start once again from formulation (10) or (11) but this time we consider this system as
a whole and try to solve it through preconditioning. The preconditioner takes the form of a
block diagonal matrix

M=

[
M1 0
0 Aqq

]
(12)

The upper left matrix M1 is nothing but system (4) associated with the Mini element. Conse-
quently, preconditioning is obtained in two steps. The inversion of the block M1 is done by
the PCR method presented in the Section 3.2. A preconditioned conjugate gradient algorithm
is applied to the matrix Aqq. This type of preconditioner is, however, quite expensive since
two iteratives solvers are called each time preconditioning is applied.
A less expensive preconditioner (although less e�cient) can be obtained by using a pre-

conditioner of the form

M=

[
M̃1 0

0 Ãqq

]
(13)

where matrices M̃1 and Ãqq have similar spectral properties in comparison with M1 and Aqq.
These matrices can for example be the associated SSOR matrices. This way, preconditioning
does not require any nested iterations.
Finally, an intermediate preconditioner can take the form

M=

[
M1 0

0 Ãqq

]
(14)

at the cost of an iterative method (PCR) for the �rst block.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:695–720
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4.2. Schur complement approach

Here again, system (11) is splitted into two parts. First, we write

Ãũ1 + B̃t ũ2 = f̃1

while the second equation of system (11) gives

ũ2 =A−1
qq (f̃2 − B̃ũ1)

Replacing, we easily get

(Ã− B̃tA−1
qq B̃)ũ1 = f̃1 − B̃tA−1

qq f̃2 (15)

The above system is similar to Equation (6) obtained with Uzawa’s method. As is easily
seen, this system has the same dimensions as a linear (P1−P1 or Mini) discretization. The size
of the global system is thus greatly reduced. Iterative methods such as GMRES or BiCGSTAB
can then be applied to this system.
Preconditioning is again an important issue. There are many possibilities and we will focus

on two of them. The �rst preconditioner comes easily to mind. Since our system is of the
same size as the one obtained using a Mini discretization, the (Mini) matrix M1 can certainly
be a preconditioner. However, there is a cost to this preconditioner since each time the
preconditioner is applied, the PCR algorithm is used. As we shall see, this is an e�ective
preconditioner. Finally, as in the previous section, a less expensive variant of the matrix M1

can be used such as the associated SSOR matrix.

5. NUMERICAL RESULTS

In this section, we will discuss the performance of the iterative solvers described in the
previous sections. Since we are mainly interested in large-scale industrial problems, we will
restrict our attention to three-dimensional �ow problems. All the 3D results presented, unless
explicitly stated, have been obtained with the P2 − P1, 10 nodes tetrahedra with continuous
pressure, i.e. the Taylor–Hood mixed �nite-element. A hierarchical basis decomposition of
the P2 interpolation subspace has been adopted throughout the paper. Hence, the quadratic
part of the velocity refers to the correction part of the quadratic �nite-element subspace. The
stopping convergence criterion is based on the relative l2-norm of the preconditioned residual

‖rk‖
‖r0‖¡�=10

−6

Most of the computations were performed on Pentium-based computers except for an SUN
Enterprise 3000 workstation. The object-oriented code MEF++developed at the Groupe In-
terdisciplinaire de Recherche en �El�ements Finis (GIREF) from University Laval, was used
for the �nite-element part. All the numerical algebra used the Portable, Extensible Toolkit for
Scienti�c Computation (PETSc) developed at Argonne National Laboratory [17].

5.1. Tests problems

Various test problems are necessary to assess the accuracy and robustness of the algorithms
presented in the previous section. Some iteratives methods (and their corresponding precon-
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v = (0,0,0)

y

Figure 3. The 3D lid-cavity problem and the boundary conditions.

Table I. Features of the meshes for the 3D lid-driven problem.

Number of Number of
Number of Number of velocity dof velocity dof Total number

Mesh elements pressure dof (linear) (quadratic) of dof

CAVITY1 48 27 81 294 402
CAVITY2 384 125 375 1812 2312
CAVITY3 3072 729 2187 12552 15468
CAVITY4 24576 4913 14739 93072 112724

ditioner) perform well on structured meshes but lose convergence on unstructured meshes. It
is thus important to verify their performance on a wide range of problems.
3D lid-driven cavity: This is a classical test problem and a direct extension of the two-

dimensional case. The geometry of the 3D lid-cavity problem and the boundary conditions
are shown in Figure 3. No-slip boundary conditions are imposed on all sides but one, where
a unit velocity �eld (tangent to the surface) drives the �ow.
Since we want to study the performance of the various iterative solvers with respect to

mesh re�nement, we used four di�erent meshes obtained by subdividing each edge by a
factor of two from the previous mesh. Table I gives the di�erent features of the four meshes
in terms of the number of elements, nodes, vertices from which we deduce the number of
velocity unknowns (linear and quadratic parts), the number of pressure unknowns, and the
total number of degrees of freedom of the global system.
From this table, the cost of second-order element can be clearly seen in the last column. For

the large meshes considered here, it appears that the total number of degrees of freedom for
the Taylor–Hood discretization is approximatively 6 times the number of degrees of freedom
with the Mini discretization.
Rectangular pipe �ow: The second problem is the 3D rectangular pipe �ow or the duct

�ow. This is a common geometry in polymer �ow, for instance in injection moulding process.
Contrary to the familiar cylindrical pipe �ow, there is no simple closed form for the velocity
pro�le even in the Newtonian case. The geometry and the boundary conditions are described

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:695–720
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τnn = -1

x

y

z
5

(0, 2, 5)

(2, 0, 5)

vx v=

vx v= = 0, 

= 0

v = (0, 0, 0)

O

2

2

(2, 2, 0)

y

y

Figure 4. The rectangular pipe �ow problem and the boundary conditions: v=(vx; vy; vz) and �nn= n·�·n
where � is the total stress tensor.

Table II. Features of the meshes for the rectangular pipe problem.

Number of Number of
Number of Number of velocity dof velocity dof Total number

Mesh elements pressure dof (linear) (quadratic) of dof

PIPE1 120 54 162 663 879
PIPE2 960 275 825 4278 5378
PIPE3 7680 1701 5103 30444 37248
PIPE4 61440 11849 35547 229080 276476

nn = -100  

y
x
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Figure 5. The T-geometry �ow problem and the boundary conditions: v=(vx; vy; vz) and �nn= n · � · n
where � is the total stress tensor.

in Figure 4. A pressure gradient is imposed between the inlet and the outlet section of the
boundary. Also, no transverse �ow is imposed at the inlet and the outlet section. Once again,
we have used four meshes obtained in a similar way as the previous 3D lid-driven geometry.
Table II gives the di�erent features of the four meshes in terms of the degrees of freedom
with respect to the pressure, the linear and the quadratic correction parts of the velocity.
T-geometry: This problem concerns the �ow at the junction of two cylinders, typically

encountered in the design of die pro�les in polymer processing. This is a �rst example of a
problem where an unstructured mesh is needed. It is still an academic problem but as we shall
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Figure 6. The geometry and the mesh of the single screw extruder.

see, some previously successful iterative methods failed on this problem. The geometry and
boundary conditions are given in Figure 5. Basically, the �uid is entering at both extremities
of the bottom (larger) cylinder and it gets out by the top of the transverse cylinder. Only one
mesh has been used for this problem, see Table III for details.
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Single screw extruder: Our ultimate goal is to develop a numerical strategy for the solution
of non-Newtonian �ow problems encountered in polymer processing. A typical example is the
�ow in a single �ow extruder. Figure 6 shows the geometry from two di�erent angles. As
can be easily seen, the geometry is complex. A pressure gradient is imposed between the inlet
and outlet section. No-slip conditions are imposed on the screw. Table III gives the features
of the mesh used for the single screw extruder problem.

5.2. Performance of the solvers: the (u; p) approach

5.2.1. Uzawa’s method. We �rst solve the test problems by the PCG (Uzawa) algorithm as
described in Section 3.1. Various strategies for solving the inner problem (velocity) A−1 are
compared. First, we solve as exactly as possible the inner problem by the PCG method forcing
the convergence to a 10−8 reduction of l2-norm of the (preconditioned) residual. Table IV
gives the iteration counts and the ∞-norm of the residual for all the meshes. Table IV shows
the nice property of the Uzawa method: the number of iterations of the PCG algorithm is
independent of the mesh size. Good accuracy is also obtained with this method as indicated
in the second column even if the stopping criterion is based on the preconditioned residual.
Nevertheless, this method is an example of nested iterations. This strategy can be costly since
the inner problem must be solved very accurately. Secondly, we limit the number of iterations
for the inner (velocity) PCG solver say at 50. In this case, numerical evidence indicates (not
shown here) that the overall accuracy is severely a�ected by the level of precision of the
inner problem.

5.2.2. PCR method. Numerical experiments were performed for the preconditioned
conjugate residual method presented in Section 3.2. The following block preconditioner was
used [

MA 0
0 M

]

where M represents the diagonal part of the pressure mass matrix Mp, i.e. M =diag(Mp).
From the work of Wathen and Silvester [10, 11], it is known that the behaviour of this
iterative solver is essentially independent of the choice for M if one choose a spectrally
equivalent matrix to the original pressure mass matrix. The matrix MA should be an ap-
proximation of the matrix A coming from the velocity part. We have tested two choices
for the matrix MA. The �rst choice makes use of the popular SSOR relaxation scheme on
the matrix A. The second choice is the less expensive variant corresponding to the diago-
nal part of the matrix A (Jacobi preconditioner). Iteration counts and the ∞-norm of the
residual are shown at Table V for the 3D lid-driven cavity problem and Table VI for the
pipe �ow. In all cases, the overall accuracy is good. For the Jacobi preconditioner, the it-
eration counts behave almost linearly with the mesh size, O(h−1). The behaviour of the
SSOR preconditioner is better according to the number of �ops as given by the PETSc
package, [17].

5.2.3. Arrow–Hurwicz method. Finally, we have tested our version of the Arrow–Hurwicz
method as presented in Section 3.3. The global system is solved by the BiCGSTAB algorithm
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Table III. Features of the meshes for the T-geometry and the single screw problem.

Number of Number of
Number of Number of velocity dof velocity dof Total number

Mesh elements pressure dof (linear) (quadratic) of dof

T-GEOM 16726 3847 11541 67731 83119
SCREW 3769 1008 3024 16257 20289

Table IV. PCG iterations for the Uzawa method: 3D lid-driven cavity problem.

Uzawa

Number of l∞-Norm
Mesh iterations of the residual

CAVITY1 20 1:2× 10−6
CAVITY2 27 4:6× 10−7
CAVITY3 28 1:7× 10−7
CAVITY4 29 1:7× 10−6

Table V. PCR iterations: 3D lid-driven cavity problem.

PCR method

SSOR preconditioner Jacobi preconditioner

Number of l∞-Norm of Number of l∞-Norm of
Mesh iterations the residual Flops× 108 iterations the residual Flops× 108

CAVITY1 49 3:0× 10−7 0.053 60 3:9× 10−7 0.038
CAVITY2 136 2:9× 10−7 0.994 236 2:6× 10−7 1.016
CAVITY3 211 6:1× 10−7 11.35 374 2:6× 10−7 11.77
CAVITY4 252 2:0× 10−7 104.0 679 1:3× 10−7 163.2

with the following block triangular preconditioner decomposition[
MA 0
B −M

]

Again, we have chosen M =diag(Mp) where Mp is the pressure mass matrix. The matrix
B is the discrete divergence matrix. Similar to the PCR approach, SSOR and Jacobi has been
chosen for the MA preconditioner. Tables VII and VIII give the iteration counts and the ∞-
norm of the residual for the BICGSTAB algorithm in the case of the 3D lid-driven cavity
problem and the pipe �ow, respectively. According the values of the ∞-norm, the overall
accuracy is still good with this method.
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Table VI. PCR iterations: rectangular pipe �ow problem.

PCR method

SSOR preconditioner Jacobi preconditioner

Number of l∞-Norm of Number of l∞-Norm of
Mesh iterations the residual Flops× 108 iterations the residual Flops× 108

PIPE1 75 1:7× 10−7 0.189 109 2:7× 10−7 0.163
PIPE2 134 8:7× 10−8 2.368 244 1:4× 10−7 2.533
PIPE3 215 5:7× 10−8 28.44 441 4:0× 10−8 34.05
PIPE4 314 2:6× 10−8 321.2 853 1:0× 10−8 507.8

Table VII. BiCGSTAB iterations for the Arrow–Hurwicz method: 3D lid-driven cavity problem.

Arrow–Hurwicz method

SSOR preconditioner Jacobi preconditioner

Number of l∞-Norm of Number of l∞-Norm of
Mesh iterations the residual Flops× 108 iterations the residual Flops× 108

CAVITY1 28 2:3× 10−8 0.059 39 5:8× 10−8 0.050
CAVITY2 31 1:5× 10−7 0.453 71 1:6× 10−7 0.607
CAVITY3 43 3:4× 10−8 4.636 108 2:2× 10−7 6.781
CAVITY4 70 3:6× 10−8 57.88 266 1:7× 10−7 127.9

Table VIII. BiCGSTAB iterations for the Arrow–Hurwicz method: rectangular pipe �ow problem.

Arrow–Hurwicz method

SSOR preconditioner Jacobi preconditioner

Number of l∞-Norm of Number of l∞-Norm of
Mesh iterations the residual Flops× 108 iterations the residual Flops× 108

PIPE1 23 2:8× 10−8 0.115 39 9:8× 10−8 0.115
PIPE2 27 1:2× 10−7 0.957 65 3:0× 10−7 1.342
PIPE3 43 0:5× 10−8 11.41 159 8:2× 10−8 24.52
PIPE4 76 1:9× 10−8 155.8 244 5:6× 10−8 290.8

From the tables, we observe a similar trend compared to the PCR approach, namely the
linear behaviour with the mesh size for the Jacobi preconditioner although this e�ect is less
pronounced. The real surprise comes from the SSOR preconditioner showing a very good
behaviour with the mesh size. The numbers of �ops indicate that the performance of the
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SSOR preconditioner is better even if it is more costly than Jacobi. Although it is not constant
with respect to the mesh size, its growth is far from the linear case. This combination of the
BiCGSTAB algorithm and the above preconditioner with the SSOR matrix appear to be a
very e�ective way to solve large �ow problem. This method is roughly twice as fast as
the PCR method on both test problems. Of course, instead of the SSOR, more sophisticated
preconditioner can be use such as ILUT family or multigrid methods. In this paper, we have
restricted our analysis to the most basic preconditioners.

5.3. Performance of the solvers: the hierarchical basis approach

In this subsection, we shall analyse the performance of the hierarchical basis solvers proposed
in Section 4. Recall that these solvers make full use of the hierarchical decomposition of
the continuous quadratic �nite-element discretization of the Stokes problem. This introduces a
non-standard block partition of the unknowns: the �rst block is composed of the linear part of
the velocity and the pressure unknowns while the second block is associated to the quadratic
correction unknowns of the velocity.

5.3.1. Global preconditioned method. At �rst, a global approach is adopted for solving the
linear system (10). Let us recall from Section 4.1 that the preconditioner based on matrix
(12) requires full resolution of a linear system with a Mini matrix M1 and the solution of
another linear system with matrix Aqq. In all computations, the global system (10) is solved
by the restarted version of GMRES with the dimension of the Krylov subspace �xed to 30.
We �rst tested the cubic cavity �ow problem. As expected from the good conditioning of
the matrix Aqq, we found that the number of iterations was independent on the mesh size
(see Table IX). This is a nice feature of the solver similar to the Uzawa algorithm discussed
previously. Unfortunately, the convergence is rather slow compared to the Uzawa’s method.
Table IX also shows the results with GMRES solver preconditioned by matrix (13). Among
the methods based on a hierarchical decomposition and in terms of computational time, this
method was the cheapest. On the cavity �ow problem, the number of iterations was no longer
independent on the mesh size. There is, however, some drawback to this approach. Apparently,
the preconditioning matrix (13) is su�cient on structured meshes such as those we used on
the cavity �ow problem. We, however, found that on unstructured meshes, convergence was
sometimes di�cult and in some cases impossible to obtain. In particular, we were not able
to get a fully converged solution for the intersection of two cylinders problem.
Finally, we proposed in (14) to use the Mini solver as discussed in Section 3 and the

diagonal part of Aqq matrix as the preconditioning strategy for the global system (10). The
results are summarized in the last column of the Table IX. We still found that the number
of iterations was independent on the mesh size making it an e�cient way to solve iteratively
the Stokes problem. But it remains costly in terms of iteration counts. As we shall see later,
a possible explanation of this failure relies on the pressure variable which is not well calculated
with the Mini element.

5.3.2. Schur complement method. A Schur complement approach (see Section 4.2) is also
possible for solving the global linear system (10). In fact, from the block partition system
(10), we can eliminate the quadratic correction part of the velocity. The resulting Schur
complement system has the same dimension as the P1−P1 mixed �nite-element discretization
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Table IX. GMRES iterations for the global preconditioned method.

Hierarchical basis approach: global system

Preconditioned by 12 Preconditioned by 13 Preconditioned by 14

Number of l∞-Norm of Number of l∞-Norm of Number of l∞-Norm of
Mesh iterations the residual iterations the residual iterations the residual

CAVITY1 85 9:2× 10−5 87 3:4× 10−4 105 4:8× 10−5
CAVITY2 117 6:5× 10−5 222 1:6× 10−4 117 6:8× 10−5
CAVITY3 113 1:2× 10−4 342 3:7× 10−4 115 1:7× 10−4
CAVITY4 115 9:4× 10−5 501 1:4× 10−4 119 7:5× 10−5

CYLINDERS 119 7:5× 10−3 Diverge 162 5:5× 10−4

Table X. GMRES iterations for the Schur decomposition method.

Hierarchical basis approach: Schur decomposition (GMRES solver)

Mini preconditioner SSOR preconditioner

Number of l∞-Norm of Number of l∞-Norm of
Mesh iterations the residual iterations the residual

CAVITY1 20 3:1× 10−5 23 3:4× 10−4
CAVITY2 42 4:8× 10−5 73 1:6× 10−4
CAVITY3 41 8:5× 10−5 104 3:7× 10−4
CAVITY4 48 6:7× 10−5 156 1:4× 10−4

CYLINDERS 47 1:0× 10−3 138 1:4× 10−2

of the Stokes problem. Hence, the Mini solver can be used for preconditioning. As before,
we examine the performance of the solvers on the cavity problem.
At �rst, the restarted GMRES(m) method (m=30) is applied to system (15) and precondi-

tioning is obtained by solving the Mini system by the (PCR) solver introduced in Section 3.
The iteration counts are given at Table X and are similar to the ones produced by the Uzawa’s
method although slightly higher. For the cavity problem, the number of iterations was found
to be independent of the mesh size.
Next, a less costly approach makes use of the same GMRES solver preconditioned by

SSOR computed from the Mini matrix. This is a relatively e�cient compromise since we
obtain a convergent algorithm in all test cases (see Table X).
Finally, we slightly modify the preceding method by replacing the GMRES solver by

the BiCGSTAB solver. The reason being that BiCGSTAB requires less memory space than
GMRES. In this case, the number of iterations was reduced to 24, 45, 61 and 103 for the
cavity problem (see Table XI). From these results, we can conclude that the last method is
an e�ective iterative solver for the Stokes problem. Schur complement methods make use
of nested iterations. In this case, the inner iteration are not costly since the inversion of
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Table XI. BiCGSTAB iterations for the Schur decomposition method.

Hierarchical basis approach: Schur decomposition (BiCGSTAB solver)

SSOR preconditioner

Number of l∞-Norm of
Mesh iterations the residual

CAVITY1 24 1:1× 10−9
CAVITY2 45 5:6× 10−5
CAVITY3 61 1:9× 10−4
CAVITY4 103 5:1× 10−5

CYLINDERS 76 1:6× 10−3

the Aqq matrix can be done e�ciently by a PCG algorithm thanks to the good conditioning
of the matrix Aqq. Nevertheless, the above solver based on the Schur complement method
is less competitive than the Arrow–Hurwicz method of Section 3. As previously stated, the
approximation of the pressure variable by the Mini element is possibly the cause of the failure.

5.4. Quadratic versus linear discretization

In this section, we shall compare the solutions given by the Taylor–Hood (quadratic) and the
Mini (linear) discretizations. For this purpose, we extend to the 3D case a body force problem
originally proposed by Pierre [4]. Let the velocity, the pressure and the body force given by

u= (x2;−xy;−xz)

p= x2 + y2 + z2 + p0

f = (2(x − 1); 2y; 2z)

de�ned on the unit cube �= [0; 1]3. By imposing the appropriated boundary conditions on
u, u|@� = u, the pair (u; p) satis�es immediately the Stokes equations. Since the pressure is
quadratic, discretization errors will be observed for both types of discretization.
The interest of this problem lies in the fact that the Mini solution exhibits parasitic pressures

(see Reference [4] for the 2D case). Indeed, Figure 7 compares the pressure obtained by the
quadratic Taylor–Hood element and the �rst-order Mini element. The velocity �elds are also
shown. The velocity obtained by the Mini element is much better than the computed pressure.
Similar calculations for the pressure variable are reproduced in Figure 8 for the T-geometry.
Now the computed pressure with the Mini element is better but still has some oscillations.
These examples show clearly that the Mini solution may not be reliable especially for the

pressure variable. For instance, the calculation of the pressure drop using the Mini solution
may be erroneous. Of course, the oscillations in the pressure can be attenuated by mesh
re�nement or by a correct choice of the stabilization parameters. Unfortunately, there is no
general rule for choosing these coe�cients.
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Figure 7. The body-force problem: (Top) level curves of the pressure at the boundary for the
Taylor–Hood element; and level curves of the z-component of the velocity at y=0:5 for the Tay-
lor–Hood element; (Bottom) level curves of the pressure at the boundary for the Mini element; and

level curves of the z-component of the velocity at y=0:5 for the Mini element.

Our �nal remark is about the computational cost of quadratic simulations. We wish to
compare the Arrow–Hurwicz solver based on the Taylor–Hood (P2 − P1) discretization with
the PCR solver using the Mini element (P1 − P1). Of course, the number of degrees of
freedom is much higher for the P2−P1 element, about six times the total number of degrees
of freedom for the linear case but the latter is only �rst-order accurate. Hence, we should
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Figure 8. The T-geometry problem: (a) level curves of the pressure at the boundary for the Taylor–Hood
element; (b) level curves of the pressure at the boundary for the Mini element.

compare results with approximatively the same numbers of degrees of freedom. For example,
if we subdivide each edge by a factor of two, the last mesh for the cavity problem, we obtain
a new mesh called CAVITY5 having 143; 748 degrees of freedom in the linear case. This is
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similar to the quadratic discretization having 112; 724 degrees of freedom on the CAVITY4
mesh. The Mini solver on CAVITY5 required approximatively 2:4× 1010 �ops while the
Arrow–Hurwicz with the SSOR preconditioner has only 0:58× 1010 �ops or 1:27× 1010 with
the Jacobi preconditioner.

5.5. Non-linear case

Applications in polymer processing imposes to consider the non-Newtonian case where the
viscosity is given by the Carreau model:

�(|Ṡ(u)|)= �0(1 + �2|Ṡ(u)|2)(n−1)=2

Although the Carreau model is more realistic, the power-law model is also often used:

�(|Ṡ(u)|)= �0(|Ṡ(u)|)n−1

From a numerical standpoint, the power-law model is much more di�cult to deal with since
the viscosity goes to ∞ when |Ṡ(u)| tends toward 0. The Newton method described in
Section 1 was applied and the resulting linear systems were solved by the Uzawa algo-
rithm (see Section 3.1) and the Arrow–Hurwicz method of Section 3.3. Both methods gave
similar results although the Arrow–Hurwicz was a lot faster. Starting from a Newtonian so-
lution (n=1), the index n was decreased by steps of 0.1 until n=0:3. The Newton method
converges in less than �ve iterations for each value of n and the linear systems were always
fully converged without any problem.
The e�ect of the parameter n is important. As n decreases the problem becomes more

and more di�cult to solve. Moreover, in regions of low shearing, the viscosity is very large
and the velocity pro�le takes the form of a plug �ow. This is exactly what can be see in
Figure 9 for the rectangular pipe �ow where isovalues of the velocity pro�les on a plane at
mid-height of the channel (y=1) are shown. The di�erence between the Newtonian case and
the viscoplastic case (n=0:3) can be easily seen. In the Newtonian case, the velocity pro�le
is more or less parabolic while in the viscoplastic case, an almost completely �at pro�le is
observed except close to the boundaries.
Finally, we consider the �ow in a section of a single screw extruder. This problem was

chosen because the associated geometry and mesh are complex providing a good numerical test
for iteratives solvers. A pressure gradient is imposed between the entrance and exit sections
of the domain. Everywhere else, we impose a no-slip boundary condition. Figure 10 shows
the velocity vectors for the Newtonian case n=1 and the viscoplastic case n=0:3. The main
di�erence lies in the maximum modulus of the velocities which decreases with n.

6. CONCLUSION

We have developed di�erent solution strategies for the numerical solution of three-dimensional
problems arising from quadratic discretization of the Stokes problem. Uzawa and Schur com-
plement methods are very robust but need an accurate solver for A−1. In general, this is
costly. Global approaches are much less time consuming. An iterative solver based on the
hierarchical decomposition is an attractive idea but seems to be less e�cient than the usual
velocity–pressure counterpart. The failure relies on the approximation of the pressure variable.
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Figure 9. Rectangular pipe �ow: velocity pro�le on plane y=1 for (a) n=0 and (b) n=0:3.

In the near future, a more e�ective stabilized P1−P1 solver will be used as the preconditioner.
Among all the solvers considered in this paper, the Arrow–Hurwicz method accelerated by
the BiCGSTAB algorithm and preconditioned by SSOR is the best choice. Nevertheless, this
solver is not optimal with respect to the mesh size and improvement is necessary. The use
of multigrid as preconditioner for the velocity part is certainly an issue to pursue. More-
over, the method does not involve any adjustable coe�cient. Finally, the choice of quadratic
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Figure 10. Single screw extruder: velocity pro�les for (a) n=1 and (b) n=0:3.

discretization deserves some comments. Of course, quadratic elements are more expensive
than �rst-order elements. But quadratic elements are much more accurate especially if one is
interested in the pressure variable. For applications in polymer processing, the precise value
of the excess pressure drop is often needed. Finally, if one compares the computational cost
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of quadratic and linear simulations with two meshes having the same number of degrees of
freedom, it is not so clear that the linear approximation will be cheaper, but it will certainly
be less accurate.
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